Vasoactive Peptides

- Peptides used by most tissues for cell-to-cell communication
- Found in ANS, CNS
- Usually released with NTs
- Many peptides exert effects on smooth muscle, including vascular
 - Vasoconstrictors
 - Vasodilators
Vasoconstrictor Peptides

- Angiotensin II
- Vasopressin
- Neuropeptide Y
- Urotensin
- Endothelin
Vasodilator Peptides

- Bradykinin/kinins
- Natriuretic peptides
- Vasoactive intestinal peptide (VIP)
- Neurotensin
- Substance P
- CGRP (migraines)
- Adrenomedullin
Renin-Angiotensin System

• Angiotensinogen converted to Angiotensin I (Ang I) by enzyme renin
• Renin synthesized from preprohormone prorenin
• Ang I converted to Angiotensin II (ANG II) by angiotensin converting enzyme (ACE)
• Ang II converted to Angiotensin III by amino peptidase enzyme
Renin-Angiotensin System

1. Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Asn-R
 Angiotensinogen

2. Prorenin

3. Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu
 Angiotensin I

4. CONV. ENZYME

5. Asp-Arg-Val-Tyr-Ile-His-Pro-Phe
 Angiotensin II

6. AMINOPEPTIDASE

7. Arg-Val-Tyr-Ile-His-Pro-Phe
 Angiotensin III

8. Angiotensinases

9. Peptide fragments
Renin-Angiotensin System

• Kidney responsible for long-term control of BP
 – Controls blood volume
• Renin-angiotensin system hormonal system that regulates
 – BP
 – Fluid balance/homeostasis
• When blood volume low, baroceptors in kidney detect drop in BP
 – Stimulate production, release of renin in kidneys
Angiotensin

• Renin stimulates production of angiotensin
• Ang II causes arteries in kidney to constrict
 – Increases glomerular filtration
 – Increases BP
• Ang II also stimulates secretion of aldosterone from adrenal
 – Causes kidneys to increase reabsorption of sodium and water into blood
 – Also increases BP
Renin Secretion

- Synthesized in kidneys: released in response to
 - Decreased stretch in renal vascular stretch receptor
 - Decreased rate of delivery of Cl\(^-\) or Na\(^+\) to distal tubule
 - Increased renal nerve activity: epinephrine, norepinephrine
 - Increasing levels of cAMP, cGMP, intracellular Ca\(^{++}\)
- Ang II inhibits renin secretion
- Therapeutic drugs can alter release of renin
Control of Renin Secretion
Angiotensinogen

• Synthesized in, released from **liver**
• Production increased by
 – Corticosteroids
 – Estrogens
 – Thyroid hormones
 – Angiotensin II
• All of the above are associated with hypertension
• Decrease production of angiotensinogen to reduce hypertension??
ACE

- Dipeptidyl carboxypeptidase
- Converts Ang I to Ang II
- Also inactivates bradykinin
- Cleaves enkephalins, substance P
 - Physiologic significance unclear
- ACE widely distributed throughout body
Ang II

• **Blood pressure**
 – Vasoconstrictor; contracts vascular smooth muscle
 – Interacts with ANS: stimulates release of epinephrine, norepinephrine

• **Adrenal cortex/kidney**
 – Simulates aldosterone synthesis, release
 • Can stimulate glucocorticoid synthesis
 – Inhibits release of renin
 • Causes renal vasoconstriction
 • Increases tubular Na$^+$ reabsorption
Ang II

- CNS
 - Can thirst/drinking
 - Increases secretion of ACTH, vasopressin
- Cell growth
 - Mitogenic: stimulates cell division, mitosis
 - May cause hypertrophy in cardiac cells
- Binds GPCRs
 - AT₁, AT₂
- Rapidly metabolized by angiotensinase
Angiotensin System
Kinins

- Formed by enzymatic activity of **kallikreins** (kininogenases) on protein substrates called **kininogens**
- Three kinins in mammals
 - Bradykinin
 - Released by plasma kallikrein
 - Kallidin (lysylbradykinin)
 - Released by tissue kallikrein
 - Methionyllysylbradykinin
 - Released by pepsin/pepsin-like enzymes
Kallikrein-Kinin System

Angiotensinogen

RENIN
- renal
- local

Kininogen

KALLIKREIN

Angiotensin I (1-10)

ACE
- lung
- local

Bradykinin

NO ↑
Prostacyclin ↑
EDHF ↑

Hydrolysis products

Chymase
Carboxypeptidase
Cathepsin G

ANGIOTENSIN II (1-8)

⇒ Biological effects

NEPs

AMINOPEPTIDASES

Angiotensin III (2-8)

Angiotensin IV (3-8)

Angiotensin-(1-7)
Kinins

- Kallikreins can convert prorenin to renin
 - Physiologic significance unclear
- Kininogens precursors to kinins
 - Found in plasma, lymph, interstitial fluid
 - Two forms found in plasma
 - High molecular weight
 - Low molecular weight
 - LMW kininogen accounts for about 80%
 - Crosses capillary wall, enters tissue
Effects of Kinins

- Kinins are potent vasodilators
 - Heart, liver, kidney, intestines, skeletal muscle
- Vasodilator effects direct or indirect
 - Direct: inhibitory effects on vascular (arteriolar) smooth muscle
 - Indirect: stimulate release of NO or vasodilator prostaglandins
- Induce rapid, brief drop in BP when administered IV
Effects of Kinins

• **Inflammation**
 – Kinins rapidly generated after tissue injury
 – Bradykinin produces redness, heat, swelling, pain

• **Glands**
 – Kinins and kallikreins found in many exocrine, endocrine glands
 – Function not well characterized
 – Marked effects on smooth muscle
 – Role in activation of prohormones?
Kinin Actions

• Bind GPCRs
 – B_1 and B_2 (bradykinin)

• Most actions of kinins mediated by B_2 receptor
 – Widely distributed
 – B_1 role limited to inflammatory response?

• Rapidly metabolized by non-specific kininases
 – Kininase I
 – Kininase II is identical to ACE
Drugs Affecting Kinin System

- Few currently available clinically
- Receptor antagonists hold promise for
 - Inflammation
 - Nociceptive pain
- Icatibant
 - B_2 receptor antagonist used to treat bradykinin-induced angioedema: swelling of dermis and mucosa in airways, GI tract, extremities, genitalia
- Kallikrein inhibitors
 - Aprotinin, ecallantide
Vasopressin

- Important role in regulation of BP
 - Long term: acts in kidneys to increase water reabsorption
 - Short term: potent vasoconstrictor
- Binds 3 different GPCRs
 - V_{1A}, V_{1B} and V_{2}
 - V_{1A} controls vasoconstrictor effects
- **Terlipressin**: V_{1A} agonist, vasopressin analog
 - Used to treat vasodilatory shock states
 - Also used for hypotension
Vasopressin Antagonists

- **Relcovaptan**
 - V_{1A} antagonist
 - Clinical trials for Raynaud’s Disease (vasospastic disorder), tocolysis (suppresses contractions, labor)

- **Tolvaptan**
 - V_2 antagonist
 - Used to treat hyponatremia (low blood sodium)

- **Conivaptan**
 - V_1, V_2 antagonist
 - Hyponatremia
Natriuretic Peptides

• Family of peptides with natriuretic (excretion of Na^+ thru urine), vasodilator, other properties
 – Atrial natriuretic peptide (ANP)
 – Brain natriuretic peptide (BNP)
 – C-type natriuretic peptide (CNP)

• Three receptors
 – NPR_1, NPR_2, NPR_3 re
 – Single transmembrane spanning region: stimulate production of cGMP
Natriuretic Peptides

• No therapeutic drugs targeting synthesis or receptors

• ANP, BNP metabolized by neutral peptidase (NEP)

• Omapatrilat
 – Inhibits NEP (also inhibits ACE)
 – Promotes natriuresis, vasodilation
 – Used to treat hypertension, congestive heart failure
 – Not FDA approved due to angioedema
 – Others in development
Endothelins

• Proteins produced by endothelial cells
 – Constrict blood vessels, raise BP
 – Cardiovascular, lungs, kidney (decrease water, Na\(^+\) excretion)

• Endothelin 1-3 (ET-1, ET-2, ET-3)

• Three GPCRs
 – ET\(_A\), ET\(_B1\), ET\(_B2\)

• Overproduction of endothelins
 – Hypertension, cardiac hypertrophy, atherosclerosis, myocardial infarction, coronary artery disease
Endothelin Antagonists

• Bosentan
 – Competitive antagonist at ET_A, ET_B receptors
 – Used for pulmonary artery hypertension (PAH)

• Ambrisentan
 – Antagonist at ET_A receptor (PAH)

• Sitaxetan
 – Antagonist at ET_A receptor (PAH)
 – Withdrawn due to liver toxicity

• Actively investigated for cardiovascular disorders
VIP

• Small peptide of glucagon-secretin family
• Widely distributed throughout body
 – CNS, PNS
• Potent vasodilators
 – Particularly in cardiovascular system
• Activate 2 GPCRs
 – VPAC1, VPAC2
• Several drugs currently in development
 – Analogs/agonists and receptor antagonists
Substance P

• Many effects
 – Vasodilation, inflammation, pain

• Binds neurokinin receptors (NK$_1$-NK$_3$)
 – Substance P high affinity for NK$_1$
 – NK$_1$ found in CRT, vomiting center

• Several NK$_1$ antagonists used as antiemetics
 – Aprepitant
 – Fosaprepitant
 – Vestipitant (under development)
 – Casopitant (under development)
Neurotensin

- Functions as
 - Neurotransmitter/neuromodulator in CNS
 - Local hormone in periphery (vasodilator)
- In CNS modulates
 - DA, glutamate neurotransmission
- Binds GPCRs: NTR$_1$ – NTR$_3$
- Agonists, antagonists in development
 - CNS disorders (schizophrenia, Parkinson’s, alcoholism/drug abuse
 - Cardiovascular disorders
NPY

- Small peptide (36 aa); one of most abundant in CNS, PNS
 - Frequently localized in noradrenergic neurons
- Vasoconstrictor; CNS, cardiovascular, renal
- Four GPCRs
- Receptor antagonists investigated for
 - Hypertension, cardiovascular disorders
 - Appetite suppression/anti-obesity
 - Depression, anxiety, pain
 - Alcoholism
Urotensin

- 11 aa amino acid peptide
- One of most potent known vasoconstrictors
- Found in brain, spinal cord, kidneys, plasma
 - Heart, lungs, liver
- Binds GPCR; UT
- Antagonists being developed
 - Urantide, palosuran
 - Renal disease
 - Cardiovascular disorders